Nanoscale fluid flows in the vicinity of patterned surfaces.
نویسندگان
چکیده
Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nanochannels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.
منابع مشابه
The effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method
The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...
متن کاملLiquid crystals with patterned molecular orientation as an electrolytic active medium.
Transport of fluids and particles at the microscale is an important theme in both fundamental and applied science. One of the most successful approaches is to use an electric field, which requires the system to carry or induce electric charges. We describe a versatile approach to generate electrokinetic flows by using a liquid crystal (LC) with surface-patterned molecular orientation as an elec...
متن کاملFlow of thin films on patterned surfaces
We present fully nonlinear time-dependent simulations of the gravity driven flow of thin wetting liquid films. The computations of the flow down a homogeneous substrate show that the contact line where liquid, solid, and gas phase meet becomes unstable and develops patterns. These computations are extended to inhomogeneous surfaces, and show that inhomogeneity can induce instability of the flui...
متن کاملHydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics.
We investigate the slip boundary condition for flows past a chemically patterned surface. Molecular dynamics simulations show that fluid forces and stresses vary laterally along the patterned surface. A subtraction scheme is developed to verify the validity of the Navier slip boundary condition, locally, for the patterned surface. A continuum hydrodynamic model is formulated using the Navier-St...
متن کاملشبیهسازی عددی جریان آشفته کانال نیمموج با سطوح آبدوست و آبگریز
In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 96 11 شماره
صفحات -
تاریخ انتشار 2006